

Miniature OEM TEC Controller

General Description:

The TEC-1092 is a very small, PCB mountable Peltier controller module, especially designed to meet the requirements for small thermoelectric applications.

Product Highlights:

- High current resolution
- Temperature control rate from 1 Hz to 90 Hz
- · Very small dimensions
- High efficient controller (DC output)

Applications:

- Telecom grade TEC modules
- Cooling of thermally fast objects
- Infrared detectors / sensors
- · Gas sensor applications

 TEC-1092 can be mounted on the EVL-1093 Evaluation Board (See page 5 for more information)

Features

Input Characteristics:

• DC Input Voltage: 5 to 12 V

Output Stage TEC Controller:

Voltage: 0 to ±9.6 V
 Current: 0 to ±1.2 A

Main Features:

- · Print mountable controller
- Temperature Sensor Types: Pt100, Pt1000, NTC, Volate
- Temperature Precision / Stability: <0.01 °C
- Temperature Control & Measurement Frequency: 1 Hz, 10 Hz, 90 Hz
- No cooling required (natural convection)
- Communication bus compatible
- · Configuration and monitoring with Service Software

Operation Modes:

- Stand-alone operation
- Remote-controlled over RS232 TTL, RS485, I/O
- Script-controlled over lookup table (thermal cycling)

Driver Modes:

- DC power supply (bipolar)
- Temperature control: PID settings, auto tuning, optional cool/heat-only or resistor heating modes

Data Interfaces:

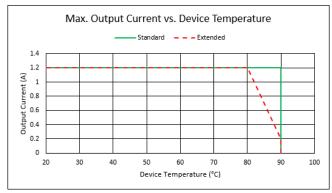
- RS232 TTL
- RS485

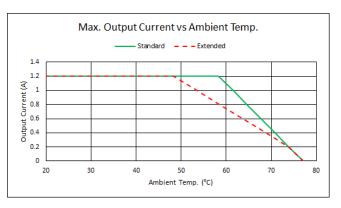
General Purpose I/O Features:

- Configurable as input to control TEC-1092 (Enable, Temperature up / down etc.)
- Configurable as output to monitor TEC-1092 (Error Indication, Temperature Stable Indication etc.)

Special Requirements / More Information:

Please contact us for additional information or customization.




TEC Controller / Peltier Driver ±1.2 A / up to ±9.6 V

TEC-1092 HW v1.00

Absolute Maximum I	Ratings
Supply voltage (DC)	20 V

Operating Ratings	
Temperature	-40 – 90°C
Humidity	5-95%, non-condensing

Standard or Extended Device Temperature Mode can be set as software setting.

The right Diagram shows the situation with an external 7.5Ω resistor. TEC Controller mounted on the EVL-1093 and supplied with 12V. No forced air flow was present.

Electrical Characteristics

Unless otherwise noted: T_A = 25 °C, U_{IN} = 12 V, R_{load} = 7.5 Ω

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units			
DC Power Supply Input:									
U _{IN}	Supply voltage		4.9		12.5	V			
Output:	Output:								
louт	Bipolar current swing				±1.2	Α			
Uout	Bipolar voltage swing				±9.6	V			
Uout Ripple	Voltage ripple	@ 1.2 A		25		mV_{PP}			
System Cha	racteristics:								
η _{50%}	Power efficiency	@ 50% load		85		%			
η90%	Power efficiency	@ 90% load		88		%			
Output Mon	Output Monitoring (Iout resolution is 732uA; Uout resolution is 4.15 mV)								
lou⊤ Read	Precision	@ 1.2 A		1	5	%			
Uout Read	Precision	@ 9.6 V	•	1	3	%			

Output Safety Characteristics

Unless otherwise noted: $T_A = 25$ °C, $U_{IN} = 12 \text{ V}$

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units		
Output Stage Protection Delays:								
toff Short cir	cuit	Full load condition		10	30	μS		
toff Power system limits		Current and voltage limits			200	μS		
	Output Stage Current Supervision: (If the OUT+ and OUT- currents differ too much, an error is generated)							
I _{OUT_DIFF}	Error threshold			120		mA		

Object Temperature Measurement Characteristics (NTC Probes)

NTC thermistor resistive input characteristics translate into temperature ranges valid for only one type of NTC probe. Below example is given in the case of an NTC $B_{25/100}$ 3988K R_{25} 10k temperature sensor.

Symbol	Parameter	Test Conditions / Hints		Тур	Max	Units
R _{OBJ} , RANGE	ADC Auto Gain	Very Low-°T Configuration NTC1M	73		1M	Ω
	PGA = 1 or 8 or 32	Corresponding temperature range	194.3 to -55.5		°C	

Robj, RANGE is resistance range of the NTC sensor

TEC Controller / Peltier Driver ±1.2 A / up to ±9.6 V

TEC-1092 HW v1.00

Object Temperature Measurement Characteristics (Pt100 and Pt1000 Probes)

 $T_A = 25$ °C, measurement configuration = 23 bit / 4-wire / unshielded cable <50 mm

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
T _{OBJ} , RANGE	Range	Range is extendable upon request (Default measurement range is -220°C +200°C)	-100		+200	°C
T _{OBJ} , PREC	Precision	Device temperature = 25°C (EN 60751 / IEC 751)		0.005	0.01	°C
T _{OB} J, COEFF	Temp. Coefficient	Relative to device temperature			1.6m	°C/K
Tobj, noise	Value Noise	Reference measurement fluctuations while output stage operating @70% load		0.003		°C
T _{OBJ} , REP	Repeatability	Repeated measurements of reference resistors after up to 3 days		0.005		°C

Object Temperature Monitoring Configuration (Voltage Measurement)

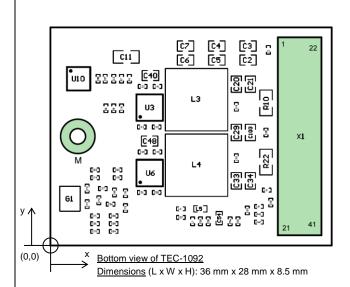
Sensors with linear Voltage/Temperature output.

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
VSENS, RANGE	Range	Voltage input Configuration VIN1	0.122		2.039	V
V OLIVO, IVAIVOL	rtarigo	Temperature range depends on sensor used	0		2.000	•

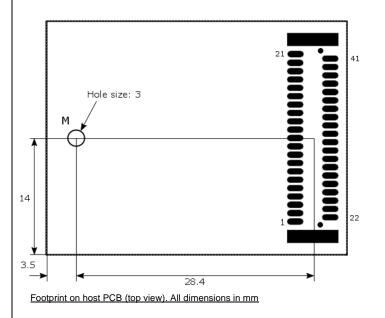
Heatsink Temperature Measurement Characteristics (NTC only)

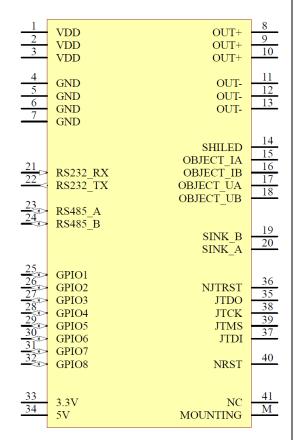
 $T_A = 25$ °C, measurement configuration = 12 bit / 2-wire / unshielded cable <50 mm, °T probe = NTC B_{25/100} 3988K R₂₅ 10k

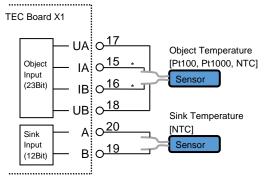
Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
D	Danas		180		44600	Ω
KSINK, RANGE	Rsink, Range Range	Corresponding temperature range		150 to -6.0		°C


RS232 TTL and General Purpose Digital I/O Characteristics (GPIO1 ... GPIO8, RX, TX)

Unless otherwise noted: $T_A = 25$ °C, $U_{IN} = 12$ V


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units				
Input Cha	Input Characteristics:									
U _{IH}	Logic high input threshold		2.38			V				
U _{IL}	Logic low input threshold				0.93	V				
U _{IMAX}	Maximum input voltage		-0.5		5.5	V				
Output Ch	naracteristics:									
(Microproces	sor)									
Uон	Logic high output voltage	Output current 8mA	2.8			V				
Uol	Logic low output voltage	Input current 8mA			0.4	V				


Pin Configuration and Mechanical Data


- For direct PCB mounting: The PCB should be mounted at the mounting bore M using an M2 screw Receptacle height when mated: 5.00 mm
- X1 connector type: Amphenol FCI, 41 Position Connector Receptacle, manufacturer P/N 91930-21141LF, Digi-Key P/N 609-1594-ND
- Mating connector type: Amphenol FCI, 41 Position Connector Header, manufacturer P/N 91911-31341LF, Digi-Key P/N 609-3427-1-ND
- PCB SMD threaded standoff (for bore hole M on host PCB): Würth Electronics, M2, manufacturer P/N 9774050243R, Digi-Key P/N 732-7097-1-ND

Pin Description X1:

- Pin 35-40: JTAG programming signals (do not connect) or may be used for DPY-1113.
- Pin 33 (3.3V) outputs up to 200mA for external loads
- Pin 34 (5V) outputs up to 100mA for external loads

* The TEC-1092 uses always 4 wires to sense the object temperature. There are no bridge jumpers on board. For NTC1M, please make a bridge on the mother board close by the X1 connector.

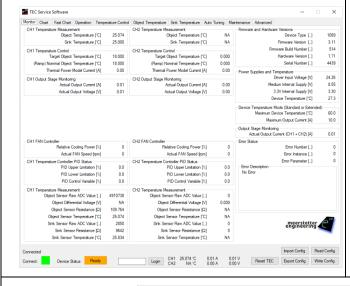
TEC Controller / Peltier Driver ±1.2 A / up to ±9.6 V

TEC-1092

HW v1.00

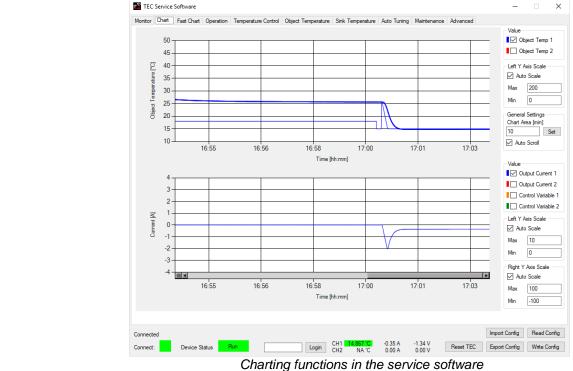
Operation-Modes / Theory of Operation

The TEC-1092 is an OEM precision TEC controller that is primarily designed as a PCB mountable device. However, the TEC-1092 can be mounted on the EVL-1093 Evaluation Board. This allows the connection to a host by USB and usage of a DPY-1113 TEC Status Display Kit.


Status information can be polled at any time by industry-standard RS485 / RS232 TTL connection or by USB (see box below). The TEC-1092 can also operate in a remotely-controlled manner, with parameters adjusted on the fly. The latest firmware upgrade introduced scripting capability by sequential lookup table read-out.

Configured as a DC power-supply, the TEC-1092 can handle current and voltage settings. In the remote-control case, temperature data may be passed on to be processed by the host.

Configurable parameters further include: sensor linearization (Pt100 / Pt1000) and Steinhart-Hart modeling (NTC), temperature acquisition hardware calibration, Peltier element modeling, PID controller auto tuning, nominal temperature ramping, current, voltage and temperature limits, error thresholds, etc. Please refer to the TEC Controller User Manual (Document 5216) for further information.


HW v1.00

TEC Service Software

Features:

- Operation control, monitoring and data logging
- · Limits and error management
- · Charting functions for TEC controller
- Auto tuning of PID values
- Firmware upgrades
- Included in the price of the controller

TEC Controller / Peltier Driver ±1.2 A / up to ±9.6 V

TEC-1092

HW v1.00

TEC-1092 Ordering Information, Hardware Configuration

Example Configuration: TEC-1092-PT100

TEC Model: -TEC-1092

Object Sensor Type:

- PT100 (4 Wire)

- PT1000 (4 Wire)
- NTC1M (2 Wire, R_{MAX} of NTC)
- VIN1

Customization:

Many hardware and software features of the TEC-1092 are customizable upon request. Please contact Meerstetter Engineering with your enquiry.

Meerstetter Engineering GmbH Schulhausgasse 12 3113 Rubigen, Switzerland

Phone: +41 31 712 01 01 Email: contact@meerstetter.ch Website: www.meerstetter.ch

Meerstetter Engineering GmbH (ME) reserves the right to make changes without further notice to the product described herein. Information furnished by ME is believed to be accurate and reliable. However typical parameters can vary depending on the application and actual performance may vary over time. All operating parameters must be validated by the customer under actual application conditions.