

OEM Precision TEC Controller

Features

DC Input Voltage: TEC Controller / Driver: **Output Current:**

Output Voltage: Temp. Sensor Types: Temperature Precision: Temperature Stability: **Thermal Power Control:** Configuration / Diagnosis: Dimensions (L x W x H): Efficiency: Cooling:

12 – 24 V nominal Autonomous Operation 0 to ± 4 A, <1% Ripple

0 to ±19 V (max. 0.8 * U_{IN} V) Pt100, Pt1000, NTC <0.01 ℃ T_A = 25℃ <0.01 °C PID, Performance-optimized via USB / RS485 / RS232 65 mm x 38 mm x 14 mm 95% (@ 90% Load) not required.

Advanced Operation

Operation Modes:

Further I	nformation
Aux. Temp. Sensor Type:	NTC (on Heat Sink Peltier)
Display Unit:	Optional: 2x16 Char OLED
FAN Controller (4 Wire):	Temperature Regulation
Control Interfaces:	Isolated USB 2.0, 1x RS485 / 1x RS232 4x Digital I/O (3.3 V / 5 V, General Purpose, Enable, Stable, All OK Signal)
- Temperature Control	PID Settings, Auto Tuning, optional cool/heat only mode
- DC Power Supply	Current / Voltage Settings
Driver Modes:	
- Script-Controlled	Lookup Table Read-Out
- Remotely-Controlled	USB; RS485; RS232; I/O
- Stand-Alone	w/o Live Control Interface

Please contact us for additional information, or consult the current TEC Controller User Manual (Document 5134).

General Description

The TEC-1091 is a specialized TEC controller / power supply able to precision-drive Peltier elements.

It features a true bipolar current source for cooling / heating, two temperature monitoring inputs (1x high precision, 1x auxiliary) and intelligent PID control with auto tuning. The TEC-1091 is fully digitally controlled, its hardand firmware offer various communication and safety options.

The included PC-Software allows configuration, control, monitoring and live diagnosis of the TEC controller via USB / RS485 and RS232. All parameters are saved to non-volatile memory. Saving can be disabled for bus operation.

For the most straightforward applications, only a power supply, a Peltier element and one temperature sensor need to be connected to the TEC-1091. After power-up the unit will operate according to pre-configured values. (In stand-alone mode no control interface is needed.)

The TEC-1091 can handle Pt100, Pt1000 or NTC temperature probes. For highest precision and stability applications a Pt1000 / 4-wire input configuration is recommended. (Temperature acquisition circuitry of each individual device is factory-calibrated to ensure optimal accuracy and repeatability.)

An auxiliary temperature input allows the connection of an NTC probe that is located on the heat sink of the Peltier element. This additional data is used to compensate for parasitic thermal conduction of Peltier elements.

The heating and cooling power is optimized by proprietary thermal management routines based on power balance models (for Peltier elements and resistive heaters).

TEC-1091s function either autonomously (stand-alone) or remotely controlled. Script control is available as well.

Further functionality includes: Smooth temperature ramping, thermal stability indication and auto gain (NTC probes). The PC-Software allows data logging and configuration import/export.

Many features (hardware, software) of this OEM product are customizable upon request.

The TEC-1091 is part of the TEC-Family of Meerstetter TEC controllers, which share the same system bus protocol, design and technology.

The TEC-1091 is designed to be connect through wires or to be soldered on a PCB.

Applications

Optics (Laser Diodes, Crystals, ...) Electronics (Detectors, RF References, ...) Instrumentation (Microscopy, Materials, Biochemistry, ...)

0 – 40 ℃ -30 − 70 °C

5 – 95%, non-condensing

Absolute Maximum Ratings		
Supply voltage (DC)	27 V	
Supply current (DC)	4 A	
Bipolar output voltage	±24 V	
Bipolar output current	±6 A	

Electrical Characteristics

Unless otherwise noted: $T_{A} = 25 \,^{\circ} C$. $U_{IN} = 24 \,$ V. $R_{Ioad} = 3.75 \,\Omega$

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
DC Power S	upply Input:		÷		-	-
U _{IN}	Supply voltage		4.9		24	V
U _{IN} Ripple	Ripple tolerance	U _{IN} never below U _{IN min}			300	mV_{PP}
Output:						
IOUT	Bipolar current swing				±4	Α
U _{OUT}	Bipolar voltage swing	U _{IN} at least 0.8 * U _{OUT} / see diagram			±19	V
U _{OUT} Ripple	Voltage ripple	@ 4 A		80		mV_{PP}
System Cha	aracteristics:					
η _{50%}	Power efficiency	@ 50% load		91		%
$\eta_{90\%}$	Power efficiency	@ 90% load		95		%
Output Mon	itoring (IOUT Resolution	is 1.46mA; U _{OUT} Resolution is 6.1mV)				
I _{OUT} Read	Precision	@ 0 A, 4.0 A		1	2.5	%
U _{OUT} Read	Precision	@ 0 V, 15.0 V		1	2.5	%

Operating Ratings

Ambient Operation

Storage Humidity

Object Temperature Measuring Characteristics (Pt100 and Pt1000 Probes) $T_A = 25 \,^{\circ}C$, measurement configuration = 23bit / 4-wire / unshielded cable <50mm

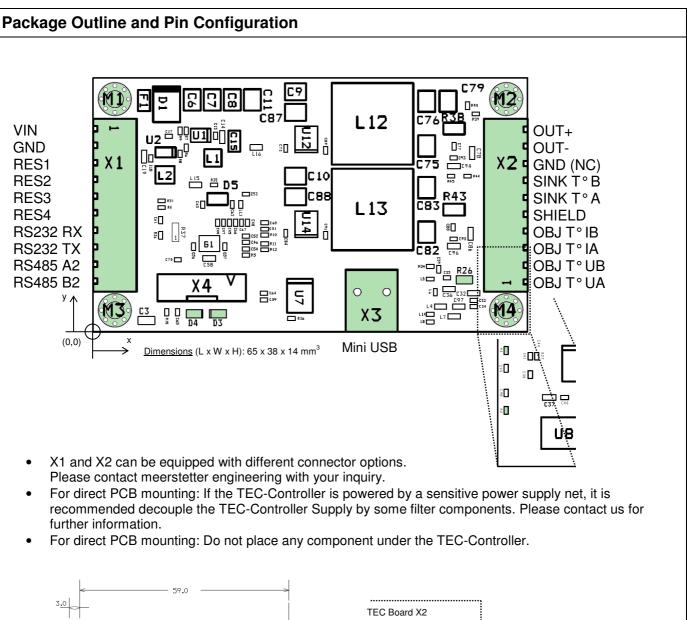
Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
T _{OBJ, RANGE}	Range		-50		+200	°C
T _{OBJ, PREC}	Precision	Device temperature = 25 ℃ (EN 60571 / IEC 751)		0.005	0.01	°C
T _{OBJ, COEFF}	Temp. Coefficient	Relative to device temperature			1.6m	℃/K
T _{OBJ, NOISE}	Value Noise	Reference measurement fluctuations while output stage operating @70% load		0.003		°C
T _{OBJ, REP}	Repeatability	Repeated measurements of reference resistors after up to 3 days		0.005		°C

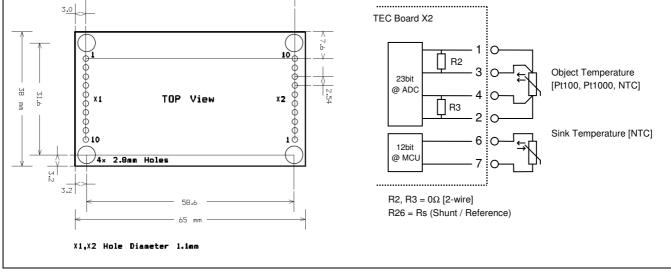
Object Temperature Measuring Characteristics (NTC Probes) NTC thermistor resistive input characteristics translate into temperature ranges valid for only one type of NTC probe. Below example is given in the case of an NTC B_{25/100} 3988K R₂₅ 10k temperature sensor.

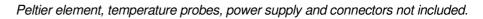
Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
Р	Calibrated range	Standard Configuration $R_s = 56k\Omega$	3338		55742	Ω
$R_{OBJ, RANGE}$	(PGA = 1)	Corresponding temperature range	52.0 to -10.1		°C	
R _{OBJ, RANGE}	Extended range	Standard Configuration $R_s = 56k\Omega$	105		55742	Ω
	(PGA = 1 or 8 or 32)	Corresponding temperature range	1	179 to -10.	1	°C

Sink Temperature Measuring Characteristics (NTC only) $T_A = 25 \,^{\circ}C$, measurement configuration = 12bit / 2-wire / unshielded cable <50mm, $^{\circ}T$ probe = NTC B_{25/100} 3988K R₂₅ 10k

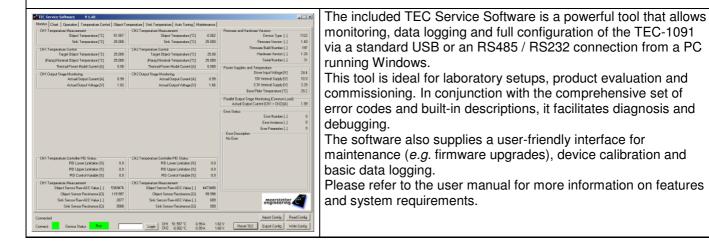
Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
Р	Denge		180		44600	Ω
T SINK, RANGE	R _{SINK, RANGE} Range	Corresponding temperature range		150 to -6.0		°C


Safety Characteristics Unless otherwise noted: $T_A = 25 \,^{\circ}C$, $U_{IN} = 24 \,^{\circ}V$

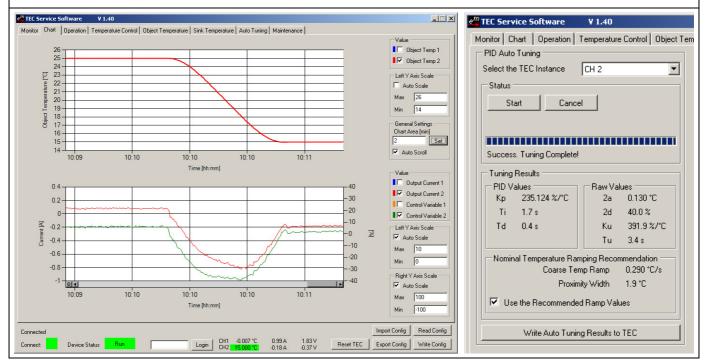

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
Input Trans	sient Overvoltage Prot	ection:				
U _{IN} Trans.	Transients				27	V
Output Sta	ge Protection Delays:					
t _{OFF} Short ci		Full load condition		10	30	μs
t _{OFF} Power s	system limits	Current and voltage limits			200	μs
t _{OFF} System	failure	System status or temperature faults		100		ms
tIMMUN Immunity to transient noise		Duration of noise on temperature monitors	300			ms
	ge Current Supervisio nd OUT- currents differ too m					
IOUT DIFF	Error threshold			800		mA


RS232 and General Purpose Digital I/O Characteristics (RES1 ... RES4, RX, TX) Unless otherwise noted: $T_A = 25 \,^{\circ}C$, $U_{IN} = 24 \,^{\circ}V$

Symbol	Parameter	Comments	Min	Тур	Max	Units
Input Char	acteristics:	·		<u> </u>	-	·
U _{IH}	Logic high input threshold		2.31			V
U _{IL}	Logic low input threshold				0.99	V
UIMAX	Maximum input voltage		-0.5		5.5	V
(Microprocess U _{OH}	aracteristics: sor) Logic high output voltage	Output current 8mA	2.9	3.3		V
U _{OH}	Logic high output voltage	Input current 8mA	2.9	0	0.4	V
ESD Prote (Between Pro	cessor and Connector)			1	100	
U _{PP}	ESD discharge	IEC61000-4-2			100	kV
R _A	Series resistance		170	200	230	Ω

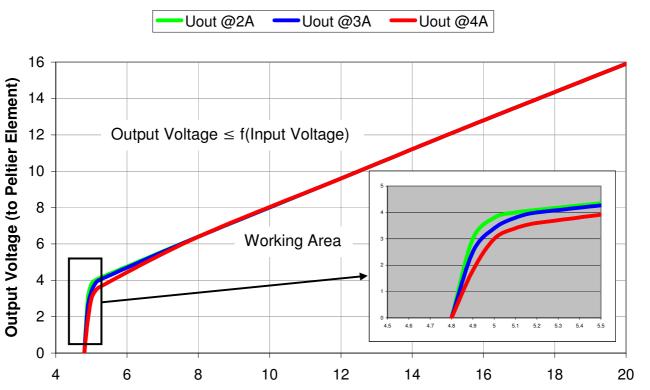

Operation-Modes and Communication Options

The TEC-1091 is an OEM precision TEC controller that is primarily designed to operate as a stand-alone device. Once configured and in operation, its basic status is visually indicated by on-board green and red LEDs and their blinking pattern. More detailed status information can be polled at any time by industry-standard RS485 / RS232 connection or by USB (see box below). The TEC-1091 can also operate in a remotely-controlled manner, with parameters adjusted on the fly. The latest firmware upgrade introduced scripting capability by sequential lookup table read-out.

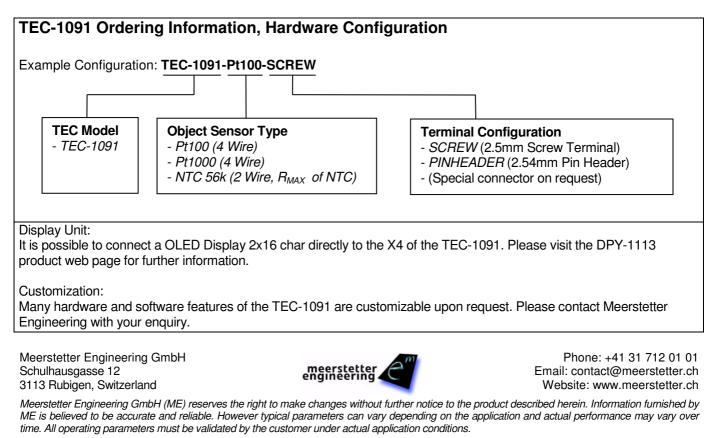

Configured as a DC power-supply, the TEC-1091 can handle current and voltage settings. In the remote-control case, temperature data may be passed on to be processed by the host.

Configurable parameters further include: sensor linearization (Pt100 / Pt1000) and Steinhart-Hart modeling (NTC), temperature acquisition hardware calibration, Peltier element modeling, PID controller auto tuning, nominal temperature ramping, current, voltage and temperature limits, error thresholds, etc. Please refer to the TEC Controller User Manual (Document 5134) for further information.

TEC Service Software



Temperature Control (Autotuned PID)


Copyright: Meerstetter Engineering GmbH

Input Voltage vs Output Voltage

Input Voltage (from DC Power Supply)

