

OEM Dual-Channel TEC Controller

The TEC-1122 is a specialized TEC controller / power supply able to precision-drive two independent Peltier elements.

Each channel features a true bipolar DC current source for cooling / heating, two temperature monitoring inputs (1x main, 1x auxiliary) and intelligent PID control with auto tuning. The TEC-1122 is fully digitally controlled, its hard-and firmware offer numerous communication and safety options.

The included PC-Software allows configuration, control, monitoring and live diagnosis of the TEC controller via USB and RS485. All parameters are saved to non-volatile memory. Saving can be disabled for bus operation.

For the most straightforward applications, only a power supply, Peltier elements and two temperature sensors need to be connected to the TEC-1122. After power-up the unit will operate according to pre-configured values. (In stand-alone mode no control interface is needed.)

The TEC-1122 can handle either Pt100, Pt1000 or NTC temperature probes. For highest precision and stability applications a Pt1000 / 4-wire input configuration is recommended. Analog measurement circuit is factory calibrated.

Auxiliary temperature inputs allow the connection of NTC probes that are located on the heat sinks of the Peltier elements. This additional data is used to compensate for parasitic thermal conduction of Peltier elements. Also, it allows the control of external heat sink cooling fans.

The heating and cooling power is optimized by proprietary thermal management routines based on power balance models (for Peltier elements and resistive heaters).

The TEC-1122's two independent channels may also be operated in parallel, to either drive two individual or one common load (current doubling).

Further functionality includes: Smooth temperature ramping, thermal stability indication and auto gain (NTC probes). The PC-Software allows data logging and configuration import/export.

Many features (hardware, software) of this OEM product are customizable upon request.

Features

Output Stage:

• Output Current / Channel: 0 to ±10 A, <1% Ripple (Dual 0 to ±16 A available as TEC-1123)

SV (Standard Voltage) Version:

- DC Input Voltage: 12 24 V
- Output Voltage / Channel: 0 to ± 22 V (max. U_{IN} 3.5 V)

HV (High Voltage) Version:

- DC Input Voltage: 12 36 V Nominal
- Output Voltage / Channel: 0 to ±31 V (max. U_{IN} 4.5 V)

Main Features:

- Two Independent TEC Controller / Driver Channels
- Temperature Sensor Types: Pt100, Pt1000, NTC
- Temperature Precision / Stability: <0.01 °C
- Performance-optimized PID for Thermal Power Control
- Configuration / Diagn. over USB / RS485 PC Software
- Dimensions (L x W x H): 120 mm x 90 mm x 18 mm
- Efficiency: > 90 % (@ 50% Load)
- Cooling over Base Plate
- Auxiliary Peltier Heat Sink NTC Temp. Sensor Input

Operation Modes:

- Stand-Alone with out Live Control Interface
- Remotely-Controlled over USB, RS485, RS422, I/O
- Script-Controlled over Lookup Table Read-Out

Driver Modes:

- DC Power Supply: Set Current or Voltage
- Temperature Control: PID Settings, Auto Tuning, optional Cool/Heat-Only or Resistor modes

Data Interfaces:

- USB 2.0 1kV isolated (FTDI Chip)
- 2x RS485 / RS422

General Purpose I/O Features:

- 8x Digital I/O Signals (3.3 V / 5 V)
- Configurable as Input to control TEC-1122 (Enable, Temperature Up / Down etc.)
- Configurable as output to monitor TEC-1122 (Error Indication, Temperature Stable Indication etc.)

Optional Components:

• Display Unit: 2x16 Char OLED (DPY-1113)

Further Information:

- Please contact us for additional information, or consult the current TEC Controller User Manual (Document 5134).
- The TEC-1122 is part of the TEC-Family of Meerstetter TEC controllers. It is designed to operate alongside devices of the LDD-Family of laser diode drivers. Both families of drivers share the same system bus, design, technology and physical dimensions.

Absolute Maximum Ratings

Supply voltage (DC)	27 V (HV: 37 V)
Supply current (DC)	20 A
Bipolar output voltage	±26 V (HV: ±35 V)
Bipolar output current	±14 A (per channel)

Operating Ratings

System base plate	< 50 ℃ (HV: < 45 ℃*)
Operation temperature	0 – 60 °C
Storage	-30 – 70 ℃
Humidity	5 – 95%, non-condensing
* Only relevant for high power of	peration

* Only relevant for high power operation

Electrical Characteristics for SV (Standard Voltage) Version

Unless otherwise noted: T_{A} = 25 °C, U_{IN} = 24 V, R_{load} = 1.75 Ω

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
DC Power S	upply Input:					
U _{IN}	Supply voltage		11.5	24	26.5	V
U _{IN} Ripple	Ripple tolerance				300	mV_{PP}
Output (per	Channel):					
I _{OUT}	Bipolar current swing				±10	Α
U _{OUT}	Bipolar voltage swing	U _{IN} at least 3.5 V greater than U _{OUT}			±22	V
U _{OUT} Ripple	Voltage ripple	R _{load} = 1.13 Ω, 10 A		90		mV_{PP}
System Cha	racteristics:					
$\eta_{50\%}$	Power efficiency	@ 50% load		91		%
$\eta_{90\%}$	Power efficiency	@ 90% load		93		%
Output Mon	itoring (IOUT Resolution	is 7.3mA; U _{OUT} Resolution is 8.8mV)				
I _{OUT} Read	Precision	@ 0 A, 10.0 A		1	3	%
U _{OUT} Read	Precision	@ 0 V, 15.0 V		1	3	%
Input Transi	ient Overvoltage and I	Reverse Polarity Protection:				
U _{IN} Trans.	Transients				28.2	V
U _{IN} Pol.	Reverse polarity				-0.7	V
			available	e option: -2	8.2 max.	V

Electrical Characteristics for HV (High Voltage) Version

Unless otherwise noted: $T_A = 25 \,^{\circ}C$, $U_{IN} = 36 \, V$, $R_{load} = 3 \, \Omega$

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
DC Power S	Supply Input:					
U _{IN}	Supply voltage		11.5	36	36.5	V
U _{IN} Ripple	Ripple tolerance				300	mV_{PP}
Output (per	Channel):					
I _{OUT}	Bipolar current swing				±10	Α
U _{OUT}	Bipolar voltage swing	U _{IN} at least 4.5 V greater than U _{OUT}			±31	V
U _{OUT} Ripple	Voltage ripple			TBD		mV_{PP}
System Cha	aracteristics:					
$\eta_{50\%}$	Power efficiency	@ 50% load		TBD		%
$\eta_{90\%}$	Power efficiency	@ 90% load		TBD		%
Output Mor	nitoring (IOUT Resolution	is 7.3mA; U _{OUT} Resolution is 10.25mV)				
I _{OUT} Read	Precision	@ 0 A, 10.0 A		1	3	%
U _{OUT} Read	Precision	@ 0 V, 30.0 V		1	3	%
Input Trans	ient Overvoltage and I	Reverse Polarity Protection:				
U _{IN} Trans.	Transients				39	V
U _{IN} Pol.	Reverse polarity				-0.7	V
			availab	le option: -	39 max.	V

Units

μs

μs ms ms

mΑ

Max

30

200

800

Output Safety Characteristics

Symbol	Parameter	Test Conditions	Min	Тур
Output Sta	ge Protection Delays			
toFF Short ci	rcuit	Full load condition		10
tore Power	system limits	Current and voltage limits		
t _{OFF} System	failure	System status or temperature faults		100
t _{IMMUN} Immu	nity to transient noise	Duration of noise on temperature monitors	300	

 (If the OUT+ and OUT- currents differ too much, an error is generated)

 IOUT_DIFF
 Error threshold

Object Temperature Measuring Characteristics (Pt100 and Pt1000 Probes)

 $T_A = 25 \,^{\circ}$ C, measurement configuration = 23bit / 4-wire / unshielded cable <50mm

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
T _{OBJ, RANGE}	Range		-50		+200	°C
T _{OBJ, PREC}	Precision	Device temperature = 25 ℃ (EN 60571 / IEC 751)		0.005	0.01	°C
T _{OBJ, COEFF}	Temp. Coefficient	Relative to device temperature			1.6m	℃/K
T _{OBJ, NOISE}	Value Noise	Reference measurement fluctuations while output stage operating @70% load		0.003		°C
T _{OBJ, REP}	Repeatability	Repeated measurements of reference resistors after up to 3 days		0.005		°C

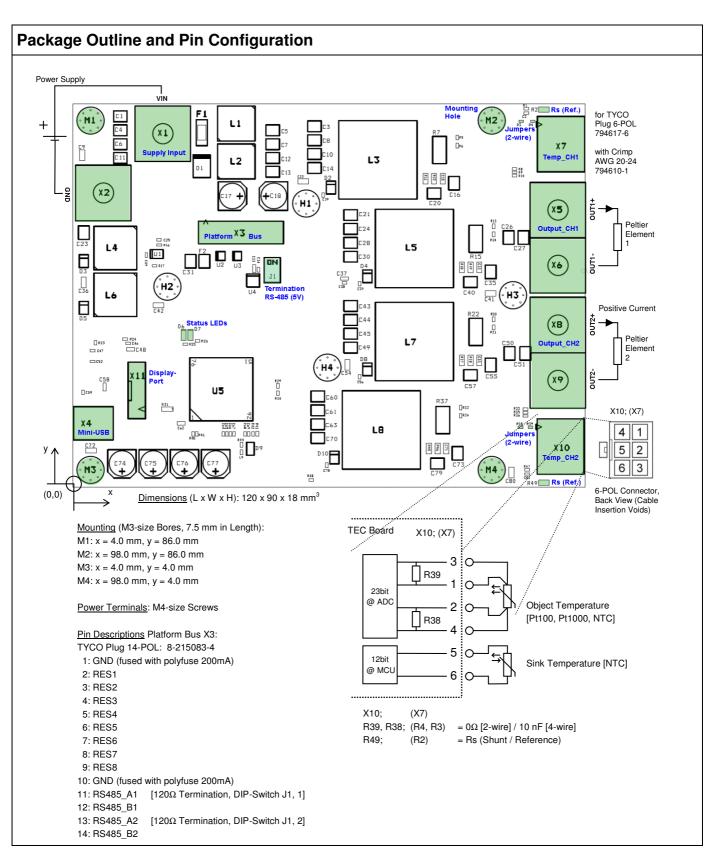
Object Temperature Monitoring Configurations (NTC Probes)

NTC thermistor resistive input characteristics translate into temperature ranges valid for only one type of NTC probe. Below example is given in the case of an NTC $B_{25/100}$ 3988K R_{25} 10k temperature sensor.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units		
Thermistor Input and Temperature Monitoring Ranges:								
		High-°T Configuration ($R_s=18k\Omega$)	1080		17910	Ω		
		Corresponding temperature range	1	84.7 to 12.2	2	°C		
P	Calibrated	Mid-°T Configuration ($R_s=39k\Omega$)	2340		38805	Ω		
R _{NTC, calibrated}	resistance range (PGA = 1)	Corresponding temperature range		61.7 to -3.4				
		Low-°T Configuration ($R_s=56k\Omega$)	3360		55720	Ω		
		Corresponding temperature range	51.8 to -10.1		°C			
	Extended resistance	High-°T Configuration ($R_s=18k\Omega$)	135		17910	Ω		
R _{NTC, extended}		Corresponding temperature range	1	64.0 to 12.	2	°C		
	range. Auto Gain (PGA = 1 or 8)	Mid- °T Configuration ($R_s=39k\Omega$)	293		38805	Ω		
	$(1 \ \text{GA} = 1 \ \text{O} \ \text{O})$	Corresponding temperature range	1	30.9 to -3.	4	°C		

Sink Temperature Measuring Characteristics (NTC only)

 $T_A = 25 \,^{\circ}C$, measurement configuration = 12bit / 2-wire / unshielded cable <50mm, $^{\circ}T$ probe = NTC B_{25/100} 3988K R₂₅ 10k

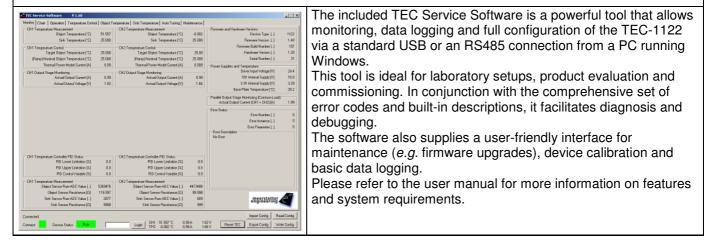

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
Р	Denge		180		44600	Ω
RSINK, RANGE	Range	Corresponding temperature range		150 to -6.0		°C

General Purpose Digital I/O Characteristics (RES1 ... RES8) Unless otherwise noted: $T_A = 25$ °C, $U_{IN} = 24$ V

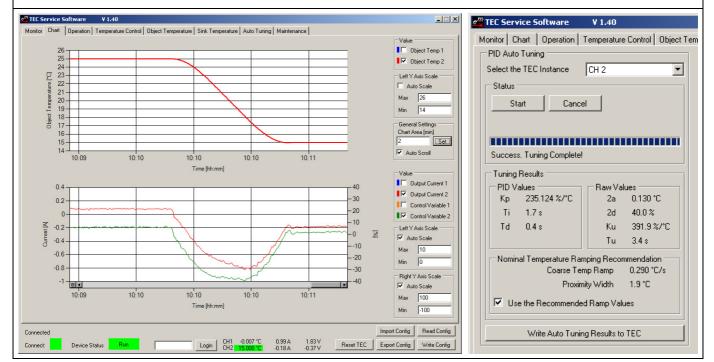
Symbol	Parameter	Comments	Min	Тур	Max	Units
Input Cha	racteristics:					
UIH	Logic high input threshold		2.31			V
U _{IL}	Logic low input threshold				0.99	V
U _{IMAX}	Maximum input voltage		-0.5		5.5	V
	naracteristics:					
(Microproces			1	1		
U _{он}	Logic high output voltage	Output current 8mA	2.9	3.3		V
U _{OL}	Logic low output voltage	Input current 8mA		0	0.4	V
ESD Prote	ection:					
(Between Pro	cessor and Connector)					
V_{PP}	ESD discharge	IEC61000-4-2			100	kV
R _A	Series resistance		170	200	230	Ω

Peltier elements, temperature probes, power supply and connectors not included.

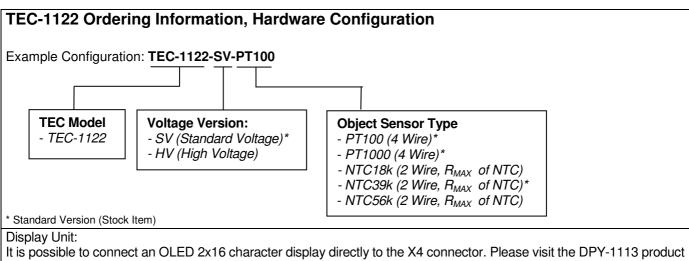
Operation-Modes and Communication Options


The TEC-1122 is an OEM two-channel TEC controller that is primarily designed to operate as a stand-alone device. Its basic operation status is visually indicated by on-board green and red LEDs and their blinking pattern. More detailed status information can be polled at any time by industry-standard RS485 connection or by USB (see box below). The TEC-1122 can also operate in a remotely-controlled manner, with parameters adjusted on the fly. The latest firmware upgrade introduced scripting capability by sequential lookup table read-out.

Configured as a DC power-supply, the TEC-1122 can handle current and voltage settings. In the remote-control case, temperature data may be passed on to be processed by the host.


Also, the TEC's two channels can be configured to operate in a 'parallel' mode to double the output current.

Configurable parameters further include: sensor linearization (Pt100 / Pt1000) and Steinhart-Hart modeling (NTC), temperature acquisition hardware calibration, Peltier element modeling, PID controller auto tuning, nominal temperature ramping, current, voltage and temperature limits, error thresholds, etc. Please refer to the TEC Controller User Manual (Document 5134) for further information.


TEC Service Software

Temperature Control (Autotuned PID)

web page for further information.

Customization:

Many hardware and software features of the TEC-1122 are customizable upon request. Please contact Meerstetter Engineering with your enquiry.

Meerstetter Engineering GmbH Schulhausgasse 12 3113 Rubigen, Switzerland

Phone: +41 31 712 01 01 Email: contact@meerstetter.ch Website: www.meerstetter.ch

Meerstetter Engineering GmbH (ME) reserves the right to make changes without further notice to the product described herein. Information furnished by ME is believed to be accurate and reliable. However typical parameters can vary depending on the application and actual performance may vary over time. All operating parameters must be validated by the customer under actual application conditions.